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TORQUE AND ANGULAR MOMENTUM

IN CIRCULAR MOTION

by

Kirby Morgan, Charlotte, Michigan

1. Introduction

Just as for translational motion (motion in a straight line), circular or
rotational motion can be separated into kinematics and dynamics. Since
rotational kinematics is covered elsewhere,1 the discussion here will center
on rotational dynamics. Our goal is to derive the rotational analog of
Newton’s second law and then apply it to the circular motion of a single
particle and to systems of particles. In particular we wish to develop
the relationship between torque and angular momentum and discuss the
circumstances under which angular momentum is conserved.

2. Torque and Angular Momentum

2a. Definitions. The torque and angular momentum are defined as
vector products of position, force and momentum. Suppose a force ~F
acts on a particle whose position with respect to the origin O is the
displacement vector ~r. Then the torque “about the point 0 and acting on
the particle,” is defined as:2

~τ = ~r × ~F . (1)

Now suppose the particle has a linear momentum P relative to the
origin. Then the angular momentum of the particle is defined as:

~L = ~r × ~p. (2)

The directions of ~τ and ~L are given by the right-hand rule for cross
products (see Fig. 1).

2b. Relationship: ~τ = d~L/dt. Using the definitions of torque and
angular momentum, we can derive a useful relationship between them.

1See “Kinematics: Circular Motion” (MISN-0-9) and “Torque and Angular Accel-
eration for Rigid Planar Objects: Flywheels” (MISN-0-33).

2See “Force and Torque” (MISN-0-5).
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Figure 1. Vector relationships for: (a) torque (b) angular
momentum (both directed out of the page).

Starting from Newton’s second law, written in the form

~F =
d~p

dt
, (3)

the torque is:

~τ = ~r × ~F = ~r ×
d~p

dt
. (4)

This can be rewritten using the expression for the derivative of a cross
product: Help: [S-1]

~τ =
d

dt
(~r × ~p)−

d~r

dt
× ~p

=
d~L

dt
− ~v × ~p.

(5)

Now ~p = m~v so ~v × ~p = 0 (because the vector product of parallel vectors
is zero), so the torque is:3

~τ =
d~L

dt
. (6)

Thus the time rate of change of the angular momentum of a particle is
equal to the torque acting on it.

2c. Motion Confined to a Plane. The expression ~τ = d~L/dt for a
particle takes on a scalar appearance when the motion of the particle is
confined to a plane.

Consider a particle constrained to move only in the x-y plane, as
shown in Fig. 2. The torque on the particle is always perpendicular to

3This equation is valid only if ~τ and ~L are measured with respect to the same origin.
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Figure 2. ~r, ~F , and ~p are
all coplanar for motion in a
plane.

m
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Figure 3. For a
particle in circular
motion, ~r and ~v are
perpendicular.

this plane as is the angular momentum [work this out using Eqs. (1) and

(2)]. Equivalently, we say that ~τ and ~L have only z-components. Since
their directions remain constant, only their magnitudes change. Then:

τ =
dL

dt
(motion in a plane). (7)

This equation holds only if ~F and ~p are in the same plane; if not (and
they won’t be for non-planar motion), the full Eq. (6) must be used.4

2d. Circular Motion of a Mass. The torque and angular momentum
for the special case of a single particle in circular motion can be easily
related to the particle’s angular variables. Suppose a particle of mass m
moves about a circle of radius r with speed v (not necessarily constant)
as shown in Fig. 3. The particle’s angular momentum is:

~L = ~r ×m~v, (8)

but since ~r and ~v are perpendicular,5 the magnitude of ~L is:

L = mvr (9)

and the direction is out of the page. Equation (9) may be rewritten in
terms of the angular velocity (since v = ωr) as:

L = mr2ω. (10)

4The component equations are τx = dLx/dt, τy = dLy/dt, τz = dLz/dt.
5See “Kinematics: Circular Motion” (MISN-0-9).
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Similarly, the torque is:

τ =
dL

dt
= mr2 dω

dt
= mr2α, (11)

where α is the particle’s angular acceleration.6

3. Systems of Particles

3a. Total Angular Momentum. The total angular momentum of
a system of particles is simply the sum of the angular momenta of the
individual particles, added vectorially. Let ~L1, ~L2, ~L3, . . ., ~LN , be the
respective angular momenta, about a given point, of the particles in the
system. The total angular momentum about the point is:7

~L = ~L1 + ~L2 + . . . =

N
∑

i=1

~Li. (12)

As time passes, the total angular momentum may change. Its rate of
change, d~L/dt, will be the sum of the rates d~Li/dt for the particles in

the system. Thus d~L/dt will equal the sum of the torques acting on the
particles.

3b. Total Torque. The total torque on a system of particles is just
the sum of the external torques acting on the system. The torque due to
internal forces is zero because by Newton’s third law the forces between
any two particles are equal and opposite and directed along the line con-
necting them. The net torque due to each such action-reaction force pair
is zero so the total internal torque must also be zero. Then the total
torque on the system is just equal to the sum of the external torques:

~τ =

N
∑

i=1

~τi,ext (system of particles). (13)

For the system, then:

~τ =
d~L

dt
. (14)

In words, the time rate of change of the total angular momentum about a
given point, for a system of particles, is equal to the sum of the external
torques about that point and acting on the system.

6See “Torque and Angular Acceleration for Rigid Plane Objects: Flywheels”
(MISN-0-33).

7For continuous mass distributions the summation becomes an integration.
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3c. Rigid Body Motion About a Fixed Axis. A rigid body is a
system of particles whose positions are all fixed relative to each other.
Since L = mvr = mr2ω for each particle in the body, we may write for
the total angular momentum:

L =

(

∑

i

mir
2
i

)

ω, (15)

where we have assumed that the body is rotating about a fixed axis with
angular velocity ω. The quantity in parentheses,

I ≡
∑

i

mir
2
i , (16)

is called the “moment of inertia” of the body.8 Thus we write

L = Iω (17)

and, since the axis of rotation is fixed, equations with a scalar appearance
hold for the torque:

τ =
dL

dt
= I

dω

dt
= Iα. (18)

3d. Example: Flywheel. As a visual example, we calculate the
torque and angular momentum for the special case of a flywheel where
the entire mass is uniformly distributed around the rim. Let “dm” be
the mass of an infinitesimal segment of the rim as shown in Fig. 4. The
angular momentum dL of the mass dm is:

dL = dmr2ω. (19)

Since r and ω are the same for all points on the rim, the total angular
momentum for the flywheel is:

L =

∫

dL = r2ω

∫

dm =Mr2ω = Iω, (20)

where M is the total mass of the flywheel. This is identical to Eq. (17)
for a single mass M in circular motion. The total torque is also the same,
i.e.,

τ =
dL

dt
=Mr2α = Iα. (21)

8See “Uniform Circular Motion: Moment of Inertia, Conservation of Angular Mo-
mentum, Kinetic Energy, Power” (MISN-0-41).
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Figure 4. Mass
on the rim of a fly-
wheel (heavy line).
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Figure 5. Rota-
tional Ek equals the
sum of particles’ Ek.

3e. Kinetic Energy of Rotation. The total kinetic energy of a sys-
tem can be written in terms of the system’s moment of inertia and angular
velocity. We start with the statement that the total kinetic energy of the
system of particles, each of which is in circular motion about a fixed axis
of rotation, is equal to the sum of the kinetic energies of the individual
particles.

Each individual particle of mass mi moves in a circle of radius ri

about the axis of rotation. If the positions of the particles are all fixed
relative to each other (as in a rigid body), then the angular velocity ω is
the same for all particles. The kinetic energy of each particle is thus:

Eik =
1

2
miv

2
i =

1

2
mir

2
i ω

2

The total kinetic energy of the rotating body is therefore

Ek =
1

2
m1r

2
1ω

2 +
1

2
m2r

2
2ω

2 + . . . =
1

2

[

N
∑

i=1

mir
2
i

]

ω2

By Eq. (16) the sum,
∑

mir
2
i , is just the moment of inertia I of the body,

so the rotational kinetic energy for a rigid body can finally be written:

Ek =
1

2
Iω2. (22)

¤ See if you can determine the moment of inertia and kinetic energy of
our flywheel in Sect. 3d. Help: [S-2]

3f. Linear vs. Rotational Motion. Here is a comparison of the
equations of dynamics in “normal” and “rotational” form:
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Table 1. General forms.

Normal Rotational
~F = d~P/dt ~τ = d~L/dt

Ek =MV 2/2 Ek = Iω2/2

For a rigid body rotating about a fixed axis, the following comparisons
hold.

Table 2. Rigid-body forms.

Normal Rotational

P =Mv L = Iω

F = dp/dt =Ma τ = dL/dt = Iα

Some of the equations shown in the Table 2 can be rewritten in vector/ten-
sor form so they have validity beyond linear and circular motion.

4. Conservation of Angular Momentum

4a. Statement of the Law. The total angular momentum of a system
of particles is conserved if there are no external torques acting on the
system. Thus:

~τ = 0 =
d~L

dt
(23)

so ~L is a constant. For a rigid body rotating about a fixed axis, L = Iω,
so that if I changes, there must be a compensating change in ω in order
for L to remain constant.

4b. If the External Torque is not Zero. If the external torque on
a system is not zero then angular momentum is not conserved for the
system. However, all is not lost, for if the system is expanded to include
whatever is causing the external torque on it (therefore changing it into an
internal torque), angular momentum will be conserved for the expanded
system.

4c. Example: Two Flywheels. Consider what happens when two
identical flywheels, one spinning and one at rest, are suddenly brought to-
gether. The spinning flywheel has total angular momentum L0 =Mr2ω0

before it is allowed to come in contact with the second flywheel. When the
two flywheels come together, the friction between them causes a torque

11
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Figure 6. Two flywheels, one spinning, one
at rest, are brought together.

to be exerted on the spinning one and, since this torque comes from an
external source, the angular momentum of the spinning flywheel is not
conserved. If, however, our system consists of both flywheels, the torques
each exert on the other are internal to the system and so there is no longer
an external torque. Thus for the expanded system, containing both fly-
wheels, angular momentum is conserved. This tells us that:

Mr2ω0 =Mr2ωf +Mr2ωf = 2Mr2ωf , (24)

where ωf is the final angular velocity at which the two flywheels rotate.
Once they are together—the spinning one slowed down (ω0 → ωf ), the
other having gone from zero to ωf—the two act as a single flywheel, with
mass 2M , rotating with angular velocity ωf = ω0/2. Help: [S-3] .

4d. Kinetic Energy of the Two Flywheels. When flywheels ro-
tating at different speeds are brought into contact, it can be expected
that kinetic energy is not conserved. This is because the nonconservative
frictional force acts on the two flywheels. The kinetic energy is initially

Ek0 =
1

2
Mr2ω2

0 , (25)

and afterward it is: Help: [S-4]

Ekf =Mr2ω2
f =

1

4
Mr2ω2

0 . (26)

Therefore the ratio of the final kinetic energy to the initial kinetic energy
is:

Ekf

Ek0

=
1

2
. (27)

This means that half of the initial kinetic energy has been dissipated due
to the frictional forces between the surfaces of the two flywheels. Thus
the total angular momentum of the system is conserved even though the
total kinetic energy is not.

12
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5. Nonplanar Rigid Bodies

Although the flywheel has been used as a specific example of rota-
tional motion, the concepts described can be applied to all rigid bodies
whether they are planar or not. The rotational motion of nonplanar rigid
bodies is discussed elsewhere.9

Acknowledgments

This module is based on one by J. Borysowicz and P. Signell. Prepa-
ration of this module was supported in part by the National Science Foun-
dation, Division of Science Education Development and Research, through
Grant #SED 74-20088 to Michigan State University.

Glossary

• angular momentum (vector): ~L = ~r × ~p, where ~p is the linear
momentum of a particle at a position ~r with respect to the origin.

• conservation of angular momentum: the total angular momentum
of a system is conserved if the external torque on the system is zero.

• moment of inertia (of a system of particles): the sum I ≡
∑

mir
2
i .

• rigid body: a system of particles whose positions are fixed relative
to each other.

• rotational dynamics: the application of dynamics to rotating bod-
ies.

• rotational kinetic energy: the kinetic energy of a particle or system
of particles rotating about a fixed point.

• torque (vector): ~τ = ~r× ~F , where ~F is the force acting on a particle
located at ~r.

9See “Rotational Motion of a Rigid Body” (MISN-0-36).
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PROBLEM SUPPLEMENT

Problem 5 also occurs on this module’s Model Exam.

1. A flywheel of radius 0.50m and mass 500.0 kg has a torque of 30.0Nm
acting on it.

a. Calculate its moment of inertia.

b. Find its angular acceleration.

c. Assuming the flywheel is initially at rest, calculate the time required
to complete the first two revolutions.

d. What is its angular velocity and tangential velocity after two revo-
lutions?

e. Find its kinetic energy after two revolutions.

2. A very lightweight circular platform has a weight of 300.0N placed on it
at a distance 25 cm from its center. The platform is placed horizontally
on a pedestal such that a frictional drag force acts on the platform at
the point where the weight is. The coefficient of friction is µ = 0.050.

a. Sketch the forces acting on the platform (assume it has zero mass)
and find their numerical values.

b. Calculate and sketch all torques acting on the system.

c. If the platform initially rotates at 8π radians/s, find how long it
takes for it to slow down and stop.

d. What else must be included in the system in order for angular mo-
mentum to be conserved?

3. Suppose the stabilizing gyroscope of a ship has a rotor of mass 5.0 ×
104 kg, all located on the rim at a radius of 0.20m. The rotor is started
from rest by a constant force of 1.00× 103N applied through a belt on
the rim by a motor.

a. Draw a diagram showing all forces acting on the rotor.

b. Show all torques acting on the rotor.

c. Compute the length of time needed to bring the rotor up to its
normal speed of 9.00× 102 rev/min.

14
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d. State what else you must include in the system so that the total an-
gular momentum will be conserved. That is, name the other object
whose rotational speed about the rotor shaft changes oppositely
as the rotor picks up speed. Describe the reaction torque which
produces the angular acceleration of the other object.

4. A system consists of two massless struts,
rigidly connected to a sleeve as shown in
the diagram. The force ~F is always at right
angles to its strut and the axle is vertical,
enabling the system to rotate freely in a hor-
izontal plane (the sketch is a view “looking
down”). Neglect gravity.

r

R
m

sleeve

F

axle

a. State why gravity can be neglected in this problem.

b. Sketch all forces acting on the system.

c. Write down and justify the value of the (net) total force acting on
the system.

d. Write down or sketch all torques acting on the system.

At the end of the system’s first complete revolution, derive the mass
m’s:

e. moment of inertia about the axle

f. angular acceleration

g. time

h. angular velocity

i. tangential velocity

j. kinetic energy

k. work done on it (
∫

~F · d~x)

l. total energy

m. change in angular momentum about the axle.

Describe a plausible expanded system within which angular momentum
is conserved in the above case. Specifically:

n. Describe the reaction torque which produces the compensating an-
gular momentum.

15
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5. A vertical flywheel of radius R contains (virtually) all of its mass M
on its rim and has a handle on one spoke at a radius r which is less
than the radius of the rim. You stand next to the flywheel, grasp the
handle, and apply a constant tangential force F to the handle.

a. Sketch all forces acting on the flywheel including that due to gravity.

b. Write down and justify the value of the net (total) force on the
flywheel.

c. Write down or sketch all torques acting on the system.

At the end of one-half of a revolution, find the rim’s:

d. moment of inertia about the axle

e. angular acceleration

f. time

g. angular velocity

h. tangential velocity

i. kinetic energy

j. work done on it

k. total energy

l. angular momentum

m. Describe the mechanism by which angular momentum is conserved
in this case.

Brief Answers:

1. a. I =
∑

mir
2
i =Mr2 = (500 kg)(0.50m)2 = 125 kgm2

b. τ = Iα

α =
τ

I
=

30Nm

125 kgm2
= 0.24 rad/s2

c. θ =
1

2
αt2: θ = 4π

t =

(

2θ

α

)1/2

=

[

(2)(4π)

0.24 s

]1/2

= 10.2 s

d. ω = ω0 + αt = 0 + (0.24/ s2)(10.2 s) = 2.4 rad/s

16
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v = ωr = (2.4 rad/s)(0.50m) = 1.2m/s

e. Ek =
1

2
Iω2 =

1

2
(125 kgm2)(2.4 s)2 = 360 J

2. a. F ( gravity) = 300N

F ( reaction) = 300N

F ( friction) = µN(normal)

= (0.05)(300N)

= 15N

r

gravity force

frictional force

reaction force of pedestal

b. τ( friction) = rF ( friction)

= (0.25m)(15N)

= 3.75Nm
0.25m

15N

frictional torque

c. τ = Iα; I =Mr2

α =
τ

I
=

τ

Mr2
=

3.75Nm

(300N/9.8m/s2)(0.25m)2
= 1.96 /s2

ω = αt

t =
ω

α
=

8π/ s

1.96/ s2
= 12.8 s

d. If the pedestal and earth are included then the earth will acquire
the compensating angular momentum so angular momentum is con-
served for the combined system.

3. a.

motor rotor rotor

mounting

bolt

axlebelt

gravity

b. only one torque (from belt): out of paper.

c. 1.57× 101min.

d. The motor exerts a torque on the ship through the motor’s mounting
bolts and mounting bed, while the ship transmits it to the water
and the water transmits some of it to the earth.

17
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4. a. The force and torque produced by gravity are exactly cancelled by
the force and torque exerted on the system to keep it in a horizontal
plane.

b.
F

axle force

c. net force is zero because the system goes nowhere (does not accel-
erate away from its present location).

d. ~τ = rF , into the paper

e. I = mR2

f. α = τ/I = Fr/(mR2)

g. θ = θ0 + ω0t+
1

2
αt2

2π = 0 + 0 +

(

1

2

)(

Fr

mR2

)

t2

t =

(

4πmR2

Fr

)1/2

h. ω = ω0 + αt = 0 +
Fr

mR2

(

4πmR2

Fr

)1/2

=

(

Fr4π

mR2

)1/2

i. v = ωR =

(

Fr4π

m

)1/2

j. Ek =
1

2
mv2 = Fr2π

k. W =
∫

~F · d~x =
∫

Fr dθ = Fr2π

l. Etot = Ek = Fr2π

m. ∆L = mvR = (mFr4π)1/2R (into paper)

n. If the axle is attached to the earth and if F ’s reaction force is against
the earth, then it is the earth which acquires the compensating
angular momentum about the axle.

18
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5. a.

axle

gravity force

F

axle force

b. zero; no acceleration of the (center of the) flywheel.

c. Fr, into page

d. MR2

e. Fr/(MR2)

f.

(

2πMR2

Fr

)1/2

g.

(

Fr2π

MR2

)1/2

h.

(

Fr2π

M

)1/2

i. Frπ

j. Frπ

k. Frπ

l. (MFr2π)1/2 R

m. The expanded system consists of the flywheel, you, and the earth.
The (frictional) force of your feet and the reaction force of the
mounting bolts against the earth causes the earth’s angular mo-
mentum about the axle to change in a compensating fashion.
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SPECIAL ASSISTANCE SUPPLEMENT

S-1 (from TX-2b)

d(~r × ~p)

dt
=

d~r

dt
× ~p+ ~r ×

d~p

dt
so:

~r ×
d~p

dt
=

d

dt
(~r × ~p)−

d~r

dt
× ~p

S-2 (from TX-3e)

I = r2

∫

dm =Mr2

Ek =
1

2
Iω2 =

1

2
Mr2ω2

S-3 (from TX-4c)

Mr2ω0 =Mr2ωf +Mr2ωf = 2Mr2ωf

=⇒ ω0 = 2ωf

ωf =
1

2
ω0

S-4 (from TX-4d)

Ekf =
1

2
Mr2ω2

f +
1

2
Mr2ω2

f =Mr2ω2
f =Mr2(

1

2
ω0)

2 =
1

4
Mr2ω2

0

=⇒
Ekf

Ek0

=

1

4
Mr2ω2

0

1

2
Mr2ω2

0

=
1

2
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MODEL EXAM

1. See Output Skills K1-K4 in this module’s ID Sheet. The actual exam
may contain one or more, or none, of these skills.

2. A vertical flywheel of radius R contains (virtually) all of its mass M
on its rim and has a handle on one spoke at a radius r which is less
than the radius of the rim. You stand next to the flywheel, grasp the
handle, and apply a constant tangential force F to the handle.

a. Sketch all forces acting on the flywheel including that due to gravity.

b. Write down and justify the value of the net (total) force on the
flywheel.

c. Write down or sketch all torques acting on the system.

At the end of one-half of a revolution, find the rim’s:

d. moment of inertia about the axle

e. angular acceleration

f. time

g. angular velocity

h. tangential velocity

i. kinetic energy

j. work done on it

k. total energy

l. angular momentum

m. Describe the mechanism by which angular momentum is conserved
in this case.

Brief Answers:

1. See this module’s text.

2. See this module’s Problem Supplement, problem 5.
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