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QUANTUM TUNNELLING

by

Peter Signell

1. “Seeing” Quantum Tunnelling

1a. Quantum Tunnelling. One of the most startling predictions of
quantum mechanics is that the wave nature of particles enables them
to tunnel through classically - impenetrable barriers. This mechanism
constitutes the traditional model of α-particle decays found in natural and
induced radioactivity, wherein an alpha particle which had been classically
trapped inside a nucleus is found to have escaped through the surface
barrier. It also governs the tunnelling of electrons through classically
- impenetrable surfaces and layers, an effect that is important in many
electrical and electronic devices.

1b. Equation Generation of Pictures. The physics equation which
allows and governs quantum tunnelling can be made to show us the details
of the process. This is accomplished by solving the equation on a computer
for a particular system at various times. The resulting solutions at the
times of interest can be plotted as graphs with any scales one wishes along
the graphs’ axes. The graphs can even be combined to make a motion
picture, a movie, of the tunnelling. For example, an equation—generated
movie of an α-decay can be made to take several minutes and be the size
of a movie screen, although the decay actually takes place in a region
about 10−12 cm in diameter and in about 10−18 sec. This means we can
observe the process at leisure and “see” how quantum mechanics allows
an object to get through an “impenetrable” barrier. As a byproduct we
will also be able to see how quantum mechanics interprets the traditional
three-line derivation of the Exponential Decay Law for escape through
such a barrier.

1c. Quantum Probability Density and Probability. Quantum
mechanics (QM) specifies the relative probabilities of finding an object
at various places at various times. Thus we can solve the relevant QM
equation to find an object’s radial probability density, p, at radii and
times of interest. Then we can integrate the probability density p to
find the total probability P of finding the object somewhere in a region.
For example, the total probability of finding the object somewhere in the
region bounded by the radii r1 and r2 at time t is just the integrated
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density at that time:

P (r1 ≤ r ≤ r2; t) =

∫ r2

r1

p(r, t) dr.

2. Evolution of a Trapped Wave Packet

2a. Probability Density at t = 0. Picture a nucleus as a hollow
sphere of unit radius inside of which we place a wave packet representing
an α-particle. This is illustrated in Fig. 1, where a time-zero radial prob-
ability density p is plotted versus radius.1 The vertical bar at unit radius
represents a spherical nuclear surface-barrier potential energy function.
Classically, it would be impenetrable for particles with less than its en-
ergy.2 The quantum probability P (t) of finding the α-particle “inside the
nucleus” at any time t is then just the appropriate integral of the density
at that time:

P (t) =

∫ r=1

r=0

p(r, t) dr.

This is the probability that the nucleus has not decayed by time t, since it
is the probability that the α-particle is still somewhere inside. The curve

1The shape of the wave packet shown in Fig. 1 was chosen as a plausible one which
might result from a real creation process. The “inside” wave function is the prod-
uct of a sine function and an exponential function, while the “outside” one is zero.
Schrödinger’s equation demands that the probability density be zero at the origin:
[see “The Schrödinger Equation in One Dimension: Quantization of Energy” (MISN-
0-242)].

2See “Potential Energy Functions and Motion” (MISN-0-22).

0
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1 2
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+

Figure 1. Probability den-
sity p(r, t) versus radius at
time 0 for a nuclear α-
particle. The vertical bar
at unit radius represents
a spherical nuclear surface-
barrier potential.
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shown in Fig. 1 is for time zero, the instant of creation of the radioactive
nucleus. Thus 100% of the probability is inside the surface at that time:

P (0) =

∫ 1

0

P (r, 0) dr = 1.00

2b. Probability Density Evolution (t ≥ 0). If we now let time
start rolling in Fig. 1, we get the time sequence shown in Fig. 2. The
time dependence shown here was generated by solving the time-dependent
Schrödinger equation on a computer.3

Scan the columns of Fig. 2 from top to bottom consecutively, creating
a sort of movie impression of the motion in your mind’s eye. Notice that
the wave packet, representing the α-particle, hits the barrier and rebounds
from it several times before settling down to a steady fading shape.

The motion between time zero and the first time the packet hits the
barrier is shown in detail in the first column of Fig. 3; the motion during
the first rebound is detailed in the second column. By scanning down the
columns of Fig. 3 you should be able to get a feeling for the motion during
those time intervals. Notice, in particular, the pulse of probability which
moves through the barrier and escapes following the first impact (right
column, Fig. 3).

3See “The Time-Dependent Schrödinger Equation: Derivation of Newton’s Second
Law” (MISN-0-248).
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Figure 2. Time increases downward and continues in the
second column. Times are shown in the upper right corner
of each frame.
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time

ln
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)

Figure 4. Plot of `nP(t) vs. t.
The time units are unspecified but
are the same as those shown in
Figs. 1, 2, 3. Note the straight-line
exponential region.

2c. Probability Evolution (t ≥ 0). We can integrate under the
curves inside the barrier for each of the frames shown in Figs. 2 and 3,
as well as in frames between those shown.4 Thus we can accumulate a
sequence of P (t) values showing the time development of the probability
left inside the surface. In order to determine whether this probability is
exponentially decaying, we can plot the logarithm of P (t) versus time.5

For the system we have just seen in Figs. 1-3, the graphs of `nP (t) and
`n [decay-rate(t)] are shown in Figs. 4 and 5. Notice that the decay
becomes rather exponential after t ' 0.6. Looking back at Fig. 2, one sees
that this is the time region where the probability density settles down to
a constant radial shape and then just fades away. A wave intensity which
maintains a space-constant shape like this is usually called a standing
wave.6 We conclude that a particle-like motion throughout the interior,
with reflections from the walls, allows pulses of probability to escape and
produces non-exponential decay. A standing wave allows the probability
to steadily seep out and produces exponential decay.

2d. Interpreting the 3-Line Exponential Decay Derivation.
The standing wave aspect of exponential decay gives an interesting inter-
pretation to the traditional three-line derivation of the exponential decay
law. In that derivation, a critical assumption is that the character of a de-

4See Appendix A, “The ’Counting Squares’ Technique for Numerical Integration”
for method and Appendix B, “Wave Packet Graphs During Exponential Decay” for
blow-ups of individual stills.

5See “Exponential Decay: Observation, Derivation” (MISN-0-311).
6See “Standing Waves” (MISN-0-232) for an elaboration and “Resonance Modes in

Membranes” (MISN-0-233) for interesting examples.
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Figure 5. Plot of the log of the
rate at which probability escapes
through the barrier. Note the
straight-line exponential region.

caying system does not change with time, that it does not “age” until the
instant of decay. This non-aging assumption manifests itself, in the three-
line derivation, through the use of a time-independent “decay constant.”
We can now interpret this “constant decay-constant” or “non-aging” as-
sumption as saying that, for exponential decay times, the system must
be a standing wave so that the shape of its probability distribution does
not change with time. Then we see no change in the system’s character
during exponential decay times, only a steady decline in its probability of
still being inside. [Q1-6]7

2e. Three Segments in a Lifetime. Pure exponential (“non-aging”)
decay is only a mathematical approximation to a particular segment in
the lives or real decaying systems. In reality, decaying systems continu-
ously “age.” An early non-exponential decay rate is often followed by a
long period when the rate is very close to being exponential. Quantum
mechanics says that this period is followed, in turn, by a period when the
decay rate approaches a time-to-a-negative-integer-power (t−n) behavior.
The transition between the latter two periods can show oscillating prob-
abilities, including some times when the decay rate is negative.8 We can
summarize by saying that a decaying system’s youth is often spent in
knocking about, with middle age being characterized by an impercepti-
bly slow change of character. This is followed by a transition period of

7Q1 refers to Question 1 in this module’s Special Assistance Supplement.
8See “Evolution of a Quasi-Stationary State,” R.G. Winter, Phys. Rev. 123, 1503

(1961) and “Large-Time Exponential Decay and ’Hidden Variables’,” R.G. Winter,
Phys. Rev. 126, 1152 (1962).
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Figure 6. The same spherical-
shell potential as in Figs. 1-3,
but with rounded edges. A
trapped particle’s energy is in-
dicated by E, its turning points
by arrowheads.

strange oscillations and then an old age with a “decay constant” which
decreases with time.

3. Classical Prediction vs. Tunnelling

3a. Classical Trapping by a Potential Barrier. What does clas-
sical mechanics predict for the motion of the particle created inside a
spherical-shell barrier at time zero? In order to make the answer easier to
obtain, we replace the previous potential with one rounded at the edges
as in Fig. 6. For any particular particle energy, such as that shown in the
figure, there are two turning points; one for a particle classically trapped
inside the barrier and one for a particle which, classically, is forever out-
side the barrier.

All that prevents an inside particle from escaping is the classically
forbidden region between the two turning points, where its kinetic en-
ergy would have to be negative and hence its velocity imaginary. If an
inside particle could penetrate this forbidden region and somehow tun-
nel through it to the outside turning point, it would then be accelerated
away from the surface and would escape. We would detect it, far from the
surface, with a kinetic energy just equal to the total energy it had while
inside the surface: we would say that the system had decayed by emission
of a particle. Classical mechanics can neither describe nor explain the
“tunnelling” part of that process.

3b. Schrödinger Equation Tunnelling. How does quantum me-
chanics allow a particle to tunnel through a barrier? The equation govern-
ing the behavior of deBroglie-Schrödinger waves, called the Schrödinger
equation, has some of the characteristics of both wave equations and dif-
fusion equations.9 The hitting and rebounding of the probability from

9For an examination of the diffusion equation some typical solutions, see “The
Diffusion Equation: Derivation and Solution” (MISN-0-171).
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the barrier shows a wave characteristic similar to, say, a water wave be-
ing reflected from a sea wall. The quick broadening of the peak to a
much more even distribution, followed by a gradual seeping through the
barrier, shows a diffusive characteristic similar to, say, the diffusion of con-
centrated sugar water to a region of lower concentration on the other side
of a semi-permeable membrane. There, also, initial irregularities quickly
dissolve into a more even, steadily decreasing concentration.

3c. Probability in the Forbidden Region. One can easily integrate
to find the amounts of probability between the turning points in Figs. 2
and 3 and hence find the numerical probability that the particle will be
in a region of imaginary velocity! Does quantum mechanics really say
that the mean velocity of the particle is imaginary there? More or less
“yes,”10 but it also says that the particle could only be observed to be
in that region if the observer supplies enough energy to it to allow the
particle to have a real velocity. Such an observer would then deduce that
the particle’s kinetic energy had been negative by comparing the supplied
energy with the observed kinetic energy. Thus the detected velocity is
real, although the undisturbed velocity in that region can be said to be
imaginary. [Q7-10]

4. Reactions to QM Probability

4a. Probabilistic Nature of Quantum Information. The great
Schrödinger equation, which apparently contains all of the secrets of
chemistry and biology, says nothing whatever about how our particle got
through the barrier and escaped. Yet it states precisely how the particle’s
probability got through the barrier. One is left with the impression that
the question of how the particle itself got through the barrier is not even
a meaningful question in the atomic domain.

4b. Attempts to Escape QM Probability. The idea of a proba-
bilistic reality is so unacceptable to some physicists that they assign the
probability density a material aspect in their minds, thinking of it as the
goo of which the particle is made. It is obvious that such a picture is
misleading: when the half-life time arrives, for example, one does not find
half the particle (or half its goo) outside the barrier. Rather, if one re-
peats the experiment many times (N→∞), one finds that in 50% of those
trials the whole particle had escaped while in the other 50% of the trials

10+Velocity is not really defined in quantum mechanics but, as here, can be assumed
to be momentum divided by mass, a quantum mechanical quantity.
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the whole particle was still inside at the half-life time. The probabilistic
picture seems inescapable.11

The discovery of this probabilistic character of quantum phenomena
so disturbed Albert Einstein that he bowed out of further participation
in the development of quantum physics and spent the last 25 years of his
life working in other areas.

4c. Interpretation of the Desire to Escape QM Probability.
Why do some of us find a probabilistic interpretation so unfulfilling, rather
than being thrilled by the difference from appearances on the every-day
macroscopic level? One hypothesis is that when certain individuals learn
of such a departure from their total past experience and belief, they find
it unusually difficult to accept the new concept.12 Another hypothesis is
that perhaps such persons go into physics with the expectation that it
will enable them to work with certainties, as opposed to the uncertainties
of personal interactions. They believe that the universe should basically
work like a watch with intermeshed gears all exactly driving each other.

It is not always fruitful to downgrade such beliefs. Physics often
seems to advance because someone tenaciously investigates a line of re-
search resulting from an intuitively- or emotionally-based belief. Such
essentially religious motivations are a recurring element in the progress of
science. This does not necessarily mean that they are beneficial on the
average, however, since they can also constitute a brake on creativity.

4d. Projected Reaction to Discovery of a Mechanism. If some
day some one shows that there is a deeper level than quantum mechanics,
a level in which nature is again mechanistic, and if this discovery results in
startling new insights and fields of development, that person will become
an instant celebrity in the physics world. For fifty years, however, the
probabilistic aspect of quantum mechanics has completely withstood all
assaults. Now what is your personal reaction to the probabilistic nature

11The Everett-Wheeler Hypothesis is a bizarre picture which makes quantum me-
chanics seem completely causal and mechanistic. This hypothesis neither adds to
nor changes the usual quantum mechanical predictions, so most physicists do not
show much interest in it. The small fraction of physicists who worry about quan-
tum measurement theory seem to have stronger pro and con opinions regarding the
Everett-Wheeler hypothesis. Another avenue of approach is discussed in “Hidden Vari-
able Theories” (MISN-0-269, UC), although recent evidence is strongly against hidden
variable theories.

12It is easy to demonstrate that incoming optical and acoustical information is often
altered by your brain in order that you will perceive a false concordance with previous
experience.
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of quantum mechanics? [Q11]
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A. “Counting Squares” for Numerical Integration

Suppose one needs the integral of a function which is only defined
by a series of points. Without knowledge of the functional form of the
curve, one must resort to some form of numerical integration or area
measurement. An appropriate method for the present case is that of
“counting squares.” As an example of the method, consider the curve of
Fig. 7, for which the desired area is between the limits x = 1, and x = 7.
The regions A and C must be evaluated separately from B, where the
values of the curve are negative. To evaluate the integral in, say, region A,
pick as basic squares either the small squares or the large darker-line ones

f(x)

x

0

1

A B C

1 2 3 4 5 6 71 2 3 4 5 6 7

Figure 7. The integrals in each of the three regions shown
are: A = 0.91, B = −0.32, C = 0.91.
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which enclose 25 smaller squares. Then count the number of your basic
squares that are enclosed by the boundaries of region A. If the curve cuts
through a square, estimate what fraction of the square is under the curve.
Normally, such estimates have surprisingly good accuracy. Using the large
squares as basic, you should find that region A contains 1.82 ± 0.02 of
them. That’s an accuracy of 1%! Now obtain the scale factor between
your squares and the f(x) scale by either finding the amount of graph
area for a given number of squares or by finding the number of squares
between definite x- and y-coordinate intervals. For example, since there
are two large squares between the intervals (0 < x < 1; 0 < y < 1), there
are two such squares per unit function area. This means that the true
area of the region A is 0.91. Similarly, you should be able to find the areas
of B and C given in the caption to Fig. 7. The total integral is then:

∫ 7

1

f(x) dx = 1.50.

B. Wave Packet Graphs During Exponential Decay

Figure 8 shows a sequence of wave packet probability distributions
during exponential decay, suitably enlarged for numerical integration.
The inverse of the decay constant, the mean life, can be shown to be
close to 0.68 for this case.

C. A Motion Picture of the Tunnelling

The three minute movie “Quantum Mechanical Tunnelling Through
a Barrier” is available. For access, see this module’s Local Guide. This
film was produced by animation of computer solutions.13 to the time-
dependent Schrödinger equation for the case shown in Fig. 1.

13See “Unitary Padé Algorithm for Solving the Time-Dependent Schrödinger Equa-
tion” (MISN-0-312), wherein the relevant computer algorithm is derived.
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Figure 8. Wave packet inside a spherical barrier during
exponential decay. The vertical bar at unit radius is the sur-
face barrier potential and the curve is the radial probability
density. Times are shown in the upper right corners.
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LOCAL GUIDE

The three-minute movie is available in the course’s Consulting Room. If
you want to see it, go there and ask the Consultant to get the personal
projector and movie cartridge out of the bottom drawer of the cabinet
and to set it up for you. Be aware that the projector’s light beam must
be aimed at the mirror at the proper angle so as to fully illuminate the
personal screen from the rear.
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SPECIAL ASSISTANCE SUPPLEMENT

Q1. Describe the motion of a trapped wave packet during the early and
later stages of decay.

Q2. Why is the probability inside the barrier equal to 100% at time
t = 0?

Q3. The probability density distribution shown in Fig. 1 looks consid-
erably higher than the barrier. Is this significant or is there no
relationship between the two heights on the graph?

Q4. Can you visualize the hittings and reboundings shown in Fig. 3, and
identify them in Fig. 2?

Q5. Why do the shapes of the curves in Figs. 2, 4, and 5 demonstrate that
particle-like motion produces non-exponential decay, while standing
waves correspond to exponential decay?

Q6. What is the connection between the detailed shapes of Figs. 4 and 5
during the first wiggle and the time of the first hitting, rebounding,
and escaping pulse of Fig. 3?

Q7. Can you relate characteristics of the Schrödinger equation to the
two regions of Figs. 4 and 5?

Q8. How can one reconcile the statement that the Schrödinger equation
predicts imaginary velocities with the fact that observed velocities
are real?

Q9. Consider a particle heading outward from the origin, heading toward
the barrier in Fig. 6. What is the particle’s classically-predicted
velocity as a qualitative function of both radius and time?

Q10. Can you show algebraically that velocity would be imaginary if a
particle’s potential energy exceeded its total energy?

Q11. What is your personal reaction to the probabilistic basis of quantum
mechanics? Do you accept it or reject it? On what grounds?

Brief Answers:

20
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The answers to the questions posed above are either in this module’s text

or are meant to be personal answers.
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MISN-0-250 ME-1

MODEL EXAM

1. See Output Skills K1-K3 in this module’s ID Sheet. The exam will
include one or more of those skills.

Brief Answers:

1. See this module’s text.

22



23 24


