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WAVE FUNCTIONS, PROBABILITY,

AND MEAN VALUES

by

P. Signell

1. Definition of Uncertainty

Heisenberg’s Uncertainty Relation is often stated1 as:

∆x ·∆p ≥ h̄

2
. (1)

Since the lower limit of this uncertainty product has a precise value,
the uncertainties in position and momentum, ∆x and ∆p, must have
correspondingly precise definitions. How would one precisely define, say,
the uncertainty in the position of an atom in a diatomic molecule or of
an electron in an atom? Any such specification must begin with a precise
knowledge of the spatial probability distribution P (x) for the particle
being considered. Suppose we have the probability distribution P (x) =
|ψ(x)|2 shown in Fig. 1. The “position” of this particle can be reasonably
stated1 as:

“position” = x̄±∆x, (2)

where x̄ is the particle’s mean position. One meaning one might try to
ascribe to Eq. (2) is that if one determines the position of the particle a
large number of times, it will be found to be within the limits in Eq. (2) in
50% of the determinations. We would say “it is within those limits 50%
of the time.”

1See “The Uncertainty Relations” (MISN-0-241).

P(x)

x

x
_

Dx

Figure 1. A possible proba-
bility density.
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However, it has been found that in order to be able to derive and
state a universal lower limit to the uncertainty product shown in Eq. (1),
one needs a different kind of specification of uncertainty. The one used
to derive the limit shown in Eq. (1) is that of “root-mean-square (RMS)
deviation from the mean”:

∆x =

√

(x− x̄)2 .

¤ Identify each piece of the above quote with an ever deeper part of the
expression on the right hand side of the equation.

The next task is to see how to compute x̄ and (x− x̄)2 from the
probability density P (x).

2. Quantum Mechanical Mean Values

2a. Definition of Mean Value. For a set of N identical objects
located at positions xn (n = 1, 2, . . . , m) the mean value of, say, x4 for
these objects would be (Appendix A):

x4 =
m
∑

n=1

x4P (xn) .

where P (xn) is the fraction of the objects located at xn and the bar over
x indicates its mean value. Equally, P (xn) is the probability that any one
specific object is located at xn. In general, the mean value of a function
f(x) is then (Appendix A):

f(x) =

m
∑

n=1

f(xn)P (xn).

Generalizing to a continuum of locations x,

f(x) =

∫ +∞

−∞

f(x)P (x) dx, (3)

where P (x) is now the probability density at the point x. This mean value
equation is used throughout statistical physics.2

2See, for example, “Energy Distribution Functions” (MISN1-0-159).
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2b. Mean Value and Probability Density in Quantum Physics.
For quantum physics, the mean position of an object described by the
wave function ψ(x) is:

x̄ =

∫ +∞

−∞

xP (x) dx =

∫ +∞

−∞

x|ψ(x)|2 dx,

since the quantum mechanical probability density3 is |ψ|2. Thus, given
any ψ(x) representing the state of a particle, we can perform the above in-
tegral and obtain the mean value of the particle’s position.4 Similarly, the
particle’s mean square position can be calculated from its wave function:

x2 =

∫ +∞

−∞

x2P (x) dx =

∫ +∞

−∞

x2|ψ(x)|2 dx,

For example, one can straightforwardly find that the mean square position
for the ground state of a simple harmonic oscillator is (Appendix B):

x2 =

∫ +∞

−∞

x2
(

a1/4π−1/4e−ax2/2
)2

dx =
1

2a
,

where the harmonic oscillator parameters are related to a by:

a =
√
km/h̄.

3. The General Rule for Mean Values

3a. Mean Value of Momentum. In the preceding section we ob-
tained the rule for computing mean values of functions of the coordinate
parameter x:

f(x) =

∫ +∞

−∞

f(x)|ψ(x)|2 dx.

Suppose, however, that we wish to find the mean value of a function of
momentum. The problem that arises can be illustrated with the momen-
tum itself. Suppose we were to try:

p̄ = ?

∫ +∞

−∞

p |ψ(x)|2 dx. (4)

3ln “Numerical Solution of the Schrodinger Equation for the Hydrogen Atom”
(MISN-0-245), quantization of energy is seen to be due to the requirement that the
probability of finding the hydrogen atom’s electron somewhere in space is unity.

4ln “The Time-Dependent Schrödinger Equation: Derivation of Newton’s Second
Law” (MISN-0-248), it is found that Newton’s Second Law is exactly valid only for
free particles, particles experiencing constant forces, and Simple Harmonic Oscillators.
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Replacing p by its derivative operator 5 and then taking the complex con-
jugate of the entire equation, one finds: [S-1]6

p̄∗ = −p̄ (assuming equation (4),

which means that the mean momentum of any object is an imaginary
number. This is ridiculous so Eq. (4) is ruled out. The rule that works is:

p̄ =

∫ +∞

−∞

ψ∗(x) p ψ(x) dx =

∫ +∞

−∞

ψ∗(x)

(

−ih̄ d

dx

)

ψ(x) dx.

After an integration by parts, one finds that the mean momentum is now
a real number with the restriction that: [S-2]

|ψ(+∞)|2 = |ψ(−∞)|2.

This condition turns out to be obeyed for those wave functions that are
of practical use.

3b. Mean Value of Functions of Position and Momentum. The
general rule, then, is to sandwich a function between * and in order to
find its mean value:

f(x, p) =

∫ +∞

−∞

ψ∗(x) f

(

x, −ih̄ d

dx

)

ψ(x) dx. (5)

For example, one can straightforwardly find the mean square momentum
for the ground state of the simple harmonic oscillator: [S-3]

p2 =
h̄2a

2
(SHO, ground state).

4. Mean Values and Rms Deviations

4a. Uncertainty in Position. The quantum mechanical uncertainty
in position, ∆x, is defined to be the root-mean-square (RMS) deviation
from the mean position:

∆x ≡
√

(x− x̄)2 .

5See “The Schrodinger Equation in One Dimension” (MISN-0-242).
6See this module’s Special Assistance Supplement.
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Carrying out the square and using the mean value equation, Eq. (3):

(∆x)2 =

∫ +∞

−∞

(x2 − 2xx̄+ x̄2)P (x) dx = x2 − 2x̄2 + x̄2 = x2 − x̄2.

Then:

∆x =

√

x2 − x̄2 .

4b. Uncertainty in Momentum. Similarly, the RMS uncertainty in
momentum is:

∆p =

√

(p− p̄)2 =

√

p2 − p̄2.

Is the mean of a sum equal to the sum of the means? Is the mean of a
product or quotient equal to the product or quotient of the means? Does
this answer depend on whether all factors but one are constant?

5. The SHO Uncertainty Product

5a. Mean Position for the Harmonic Oscillator. We will illustrate
the calculation of uncertainties with the ground state of a simple harmonic
oscillator (SHO). The SH0 is an interesting case because, for example, the
atoms in diatomic molecules exhibit radial harmonic oscillations about the
molecular center of mass for small displacements from equilibrium. The
SHO ground state wave function is:7

ψ(x) = (a/π)1/4e−ax2/2, a ≡
√
km/h̄. (6)

where the potential and total energies are:

V (x) =
1

2
kx2; E0 =

h̄2a

2m
=
h̄

2

√

k/m.

Here ψ(x) has been normalized to unit probability of finding the oscillator
somewhere in all of space:

1 =

∫ +∞

−∞

P (x) dx =

∫ +∞

−∞

|ψ(x)|2 dx.

Since our wave function is symmetrical about the origin, the mean position
is zero [S-4]:

x̄ =

∫ +∞

−∞

x |ψ(x)|2 dx =
√

a/π

∫ +∞

−∞

xe−ax2

dx = 0.

7See “The Schrodinger Equation in One Dimension” (MISN-0-242).
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One can immediately see that the integral is zero by noting that the
integrand is antisymmetrical about the origin while the limits are sym-
metrical.

5b. Mean Square Position and Momentum. The mean square
position is not zero and can be directly found by integration (Appendix
B):

x2 =
1

2a
,

and so the position uncertainty is:

∆x = 1/
√
2a.

The square of the momentum is given by:

p2ψ = 2m[E − V (x)]ψ = h̄2(a− a2x2)ψ.

The mean square momentum follows immediately:

p2 = h̄2a/2.

Since the mean momentum is zero [S-5], the uncertainty in momentum is
[S-6]:

∆p = h̄
√

a/2.

5c. Product of Uncertainties in Position and Momentum. The
product of the uncertainties in position and momentum for the ground
state of the SHO turns out to be the minimum allowed by the Uncertainty
Relation!8
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8See “The Uncertainty Relations” (MISN-0-241).
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A. Mean Values

Let N(xn) represent the numbers of objects at various positions xn.
The mean (average) value of x4 for those objects is:

x4 =
1

N

m
∑

n=1

x4N(xn),

where the N objects are distributed among m positions. The fraction
F (xn) of the N objects which are located at xn is:

F (xn) =
N(xn)

N
.

We can rewrite the mean value in terms of this fraction:

x = x4 =

m
∑

n=1

x4F (xn),

However, the fraction of the objects at xn can be reinterpreted as the
probability P (xn) that any one of them is there:

F (xn) = P (xn),

and hence:

x4 =

m
∑

n=1

x4P (xn),

For a continuum of locations x:

x4 =

∫ +∞

−∞

x4P (x) dx.

where P (x) is now a probability density, not the probability of x. Note
that just as the sum of all fractions of the whole is unity, so also the
probability of finding one object somewhere is unity:

1 =

m
∑

n=1

F (xn) =

m
∑

n=1

P (xn) = 1,

or:

1 =

∫ +∞

−∞

P (x) dx.
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B. Solving Gaussian Integrals

The function e−ax2

is-called a Gaussian function. It is frequently
met in physics and in statistics so the method of solution of its integral
is worthwhile knowing.

Method 1

Find the appropriate form in a Table of Integrals.9 For example, in A
Short Table of Integrals, B.O. Peirce, Ginn & Co. (Xerox Corporation),
Boston (1929), one finds on page 63:

492.

493.

494.

ò

ò

ò

0

0

0

¥

¥

¥

e dx =-a x2 2

x e dx =n ax-

x e dx=2 -n ax2

1
2

( ).
a
G 1_

2

G ( 1)n + .

1 .3 .5 .. .(2 - 1)n

a n + 1

2 n + n1a
Ö

1
2 a

Öp

n a>-1 >0Ý

a>0=

p_
a .

Hence:

x2 =
√

a/π

∫ +∞

−∞

x2e−ax2

dx.

Because the integrand is symmetric, this can be written:

x2 =
√

a/π2

∫ +∞

0

x2e−ax2

dx.

Now by No. 494 in Peirce’s book this becomes:

x2 =
√

a/π 2
1

4a

√

π/a =
1

2a
.

9We recommend that you own a table of integrals, such as that above, or: Table of

Integrals, Series and Products, I. S.Gradshteyn and I.M.Ryzhik, Academic Press, New
York and London (1965); or Mathematical Tables from the Handbook of Chemistry and

Physics, Charles Hougman, Chemical Rubber Publishing Co. (1931 and later dates).
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Method 2

∫ +∞

−∞

e−ax2

dx =
√

∫ +∞

−∞
e−ax2 dx

∫ +∞

−∞
e−ay2 dy

=
√

∫ +∞

−∞

∫ +∞

−∞
e−a(x2+y2) dx dy

=
√

∫ +∞

0
e−ar2 2πr dr .

where the planar area integration has been re-expressed in polar coordi-
nates. Now let z ≡ r2 so that dz = 2rdr:

∫ +∞

−∞

e−ax2

dx =

√

π

∫ +∞

0

e−az dz =
√

π/a.

x2 =
∫ +∞

−∞
x2e−ax2

dx

= − d

da

∫ +∞

−∞
e−ax2

dx

= − d

da

√

π/a =
1

2a

√

π/a .
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SPECIAL ASSISTANCE SUPPLEMENT

S-1 (from TX-3a)

Imaginary Mean Momentum from Wrong Definition
Try:

p̄ = ?

∫ +∞

−∞

(

−ih̄ d

dx

)

ψ∗(x)ψ(x) dx = −ih̄
∫ +∞

−∞

(ψ∗′ψ + ψ∗ψ′) dx.

Take the complex conjugatea of all terms, including the number p̄:

p̄∗ = ?ih̄

∫ +∞

−∞

(ψ′ψ∗ + ψψ∗′) dx.

Now the right hand side is just the negative of the right hand side of p̄
hence:

p̄∗ = ?− p̄ .
This can only be true for an imaginary number, which p̄ certainly is
not.

aSee “Some Simple Functions in the Complex Plane” (MISN-0-59).
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S-2 (from TX-3a)

Real Momentum from Correct Definition

p̄ =

∫ +∞

−∞

ψ∗(x)

(

−ih̄ d

dx

)

ψ(x) dx = −ih̄
∫ +∞

−∞

ψ∗ψ′) dx.

p̄∗ = ih̄

∫ +∞

−∞

ψψ∗′ dx = ih̄

∫ +∞

−∞

[

d

dx
(ψ∗ψ)− ψ∗ψ′

]

dx

= ih̄

∫ +∞

−∞

d

dx
(ψ∗ψ) dx− ih̄

∫ +∞

−∞

ψ∗ψ′ dx

= ih̄
[

|ψ(+∞)|2 − |ψ(−∞)|2
]

+ p̄.

Now assume that P (+∞) = P (−∞), which is virtually always true,
hence:

p̄∗ = p̄,

as it should be.
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S-3 (from TX-3b)

Calculation of SHO p̄2

Method 1

p2ψ =

(

−ih̄ d

dx

)(

−ih̄ d

dx

)

ψ = −h̄2ψ′′

= −h̄2
[

(a/π)1/4(−a+ a2x2)e−ax2
]

= −h̄2(−a+ a2x2)ψ.

Then using the fact that the mean value of a constant is just the constant
itself (why?), and using Appendix B:

p2 = h̄2(a− a2x2) = h̄2a− h̄2a2x2

= h̄2a− h̄2a2 1

2a
=
h̄2a

2
.

Method 2

p2

2m
ψ + V ψ = Eψ

p2ψ = 2m(E − V )ψ = 2m

(

E − 1

2
kx2

)

ψ

= 2m

(

h̄2a

2m
− 1

2

a2h̄2

m
x2

)

ψ

= h̄2(a− a2x2)ψ ,

etc.
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S-4 (from TX-5a)

Calculation of SHO x̄

Method 1

In the following we define (y) as (−x) and then switch the limits on the
integral:

∫ +∞

−∞

xe−ax2

dx =

∫ 0

−∞

xe−ax2

dx+

∫

∞

0

xe−ax2

dx

=

∫ 0

∞

(−y)e−ay2

(−dy) +
∫

∞

0

xe−ax2

dx

= −
∫

∞

0

(−y)e−ay2

(−dy) +
∫

∞

0

xe−ax2

dx

= −
∫

∞

0

ye−ay2

dy +

∫

∞

0

xe−ax2

dx

= −f(a) + f(a) = 0.

where f(a) is either of the integrals.

Method 2

∫ +∞

−∞

xe−ax2

dx = ?

xe-ax2

x

First note that e−ax2

is symmetric with respect to the origin: if we
substitute (−x) for (x) the function does not change sign. However, x is
antisymmetrical; it does change sign. The product of a symmetric and
an antisymmetric function is an antisymmetric one so the integrand is
antisymmetric. This can also be seen by direct substitution. We now
sketch this antisymmetric function, whose graphical area is the integral,
and we see there is as much area below the x-axis as above it so the net
area (the integral) is zero.
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S-5 (from TX-5b)

Calculation of SHO p̄

Method 1

The mean momentum is zero because a particle undergoing simple har-
monic motion spends as much time going one direction as the other.
That is, its momentum is negative as much as it is positive. The same
type of argument can be used to show that x̄ = 0.

Method 2

pψ = −ih̄dψ
dx

= −axψ,

hence:
p̄ = −ax̄ = 0.

S-6 (from TX-5b)

Calculation of SHO ∆p

∆p =

√

(p− p̄)2 = p2 − p̄2,

but p̄ = 0. Then:

∆p =

√

p2 =

√

h̄2a

2
= h̄

√

a/2.
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